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Detecting similar protein structural motifs, functionally crucial short 3D patterns, in large structure collections is compu-
tationally prohibitive. Therefore, we developed Folddisco, which overcomes this through an index of position-independent
geometric features, including side-chain orientation, combined with a rarity-based scoring system. Folddisco indexes
53 million AFDB50 structures into 1.45 terabyte within 24 hours, enabling rapid detection of discontinuous or segment
motifs. Folddisco is more accurate and storage-efficient than state-of-the-art methods, while being an order of magnitude
faster. Folddisco is free software available at folddisco.foldseek.com and a webserver at search.foldseek.com/folddisco.
Contact: martin.steinegger@snu.ac.kr

Structural motifs are short, recurring arrangements of tertiary
structural elements that form recognizable patterns in proteins
and are often associated with stability, binding interactions, or
active sites (1, 2). Evolutionary constraints due to motif func-
tionality often result in their conservation at sub-Angstrom
resolution. Thus, identifying these motifs can provide func-
tional insights, even for proteins with unknown function (3).
Notable examples for the links between structural motifs and
function include the Cys2-His2 zinc finger motif in transcrip-
tion factors and the CWxP, NPxxY and DRY motifs in G-
protein-coupled receptors (GPCRs), which have been shown
to bind zinc ions, thereby stabilizing DNA binding structure
(4) and to be involved in receptor activation (5), respectively.
Although structural motifs can directly provide functional in-
sights, most functional annotation methods rely predominantly
on sequence information, despite its indirect relationship to
function (6). This is largely due to the high throughput of
sequencing and alignment techniques (7, 8), in contrast to the
relative scarcity of structural data and the limited capabilities
of structure-comparison methods until recently (9).
However, recent revolutionary advances by AlphaFold2
(10, 11) and other deep learning-based structure prediction
methods now offer hundreds of millions (12, 13) of protein
structures. These advances have motivated the development of
rapid and scalable structural aligners, such as Foldseek (14),
which exploits this potential by enabling direct structure-based
functional annotation (15). Despite its strengths, Foldseek is
not built for motif detection, as it assumes that residues match
in linear order, in contrast to the non-linear path of far-apart
matching pieces, common to structural motifs.
The RCSB motif search method (16) uses the Protein Data
Bank (PDB) (17) as an input database. This method tackles
the non-linearity problem by breaking each structure into prox-
imal residue pairs, and extracting, for each pair, the residues’
amino acid (AA) identities as well as geometric features: the
distance between their Cα atoms, the distance between their
Cβ atoms, and the intersecting angle between the Cα-Cβ vec-
tors. Each such 5-feature set is saved in an inverted index,
which maps it to the PDB entry and positions where it occurs.
Since the number of proximal pairs scales roughly with each
structure’s residue count, indexing requires ∼75x more feature
extraction and storage operations than the number of residues.
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As a result, the RCSB method took 3.5 days and 55GB to index
160,467 structures. pyScoMotif (18) is a faster Python-based
motif finder utilizing the same pair representation, except that
it uses side-chain centroids instead of Cβ atoms. It reduced
the indexing time to 20.5 hours for 195,000 structures, but
still required 73GB, making the indexing time and storage
requirement the key limiting factors.
Another limitation of current motif search methods is their
lack of flexibility in handling various query motif types and
lengths. For instance, RCSB’s service supports query motifs
of up to 10 residues, restricting the method only to short motifs.
Alignment-based fragment search methods, like MASTER
(19), can handle longer, discontinuous queries, but struggle
with short motifs like catalytic triads or zinc fingers.
Here, we present Folddisco (Fig. 1a-c), the first motif search
algorithm that supports both short motif queries (Fig. 1d)
and long, discontinuous segments (Fig. 1e) within a single
framework. It operates efficiently on a massive scale, indexing
53 million structures in under 24 hours (<1.5 TB) with queries
taking only a few seconds. This performance makes it >18x
faster and requires <3.5x less storage than the state-of-the-art.
Folddisco examines proximal residue pairs in each input struc-
ture, extracts a set of features from each pair, encodes the
set numerically, and stores it in an index (Methods, Fig. 1b).
Extending RCSB’s feature set, Folddisco introduces two addi-
tional features: the torsion angles between the N–Cα and Cβ
atoms, used by trRosetta for structure prediction (20). This
feature set is more specific and eliminates the need to store the
positions of the matching residues, allowing the index to map
feature sets only to the structure identifiers (IDs) in which
they occur, substantially reducing its size. Furthermore, the
two angles capture side-chain orientation, which is crucial for
detecting enzyme-activity related motifs.
Folddisco’s full querying pipeline consists of four steps: fea-
ture extraction, pre-filtering, residue matching, and super-
position (Fig. 1c). First, the query motif’s feature sets are
extracted and encoded as integers. Then, Folddisco pre-filters
structures that share at least one feature set with the query
motif—including variants within defined distance, angle, and
amino acid tolerances—by looking up the query’s encodings
in the index. Folddisco prioritizes the most relevant candidate
structures by introducing a coverage score to rank them by
their specificity to the motif. This score (Methods) uses In-
verse Document Frequency (21, IDF) weights computed over
the entire index, rewarding rare feature sets and penalizing
common ones (e.g., helices). A length penalty further reduces
random hits in large proteins, ensuring consistency for queries
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Fig. 1. Folddisco’s workflow and benchmark. a, Folddisco is a fast tool for sensitive motif detection in millions of protein structures. Given motif-defining query residues
(a, left), it examines proximal pairs (<20Å) and computes feature sets for each pair. To increase sensitivity, it can generate additional feature sets accounting for amino-acid
substitutions, side-chain flexibility, and increased distances/angles (Methods “Extended search”). Each set is encoded (b) and rapidly searched (c) against a precomputed
index of pairwise features from database structures. b, Feature set and index: Folddisco associates each structure with an ID and extracts 5 RCSB features (black) and 2
new features (pink) from its pairs of proximate residues. Each set of 7 features is bit-encoded and stored in an index that maps to all IDs in which the set was found. c,
Querying: analogous feature extraction from proximal motif residues is followed by retrieval of structure IDs that share its feature sets (“pre-filter”). Pre-filtered structures can be
further processed to match their residues (pink) to the query (gray). d,e, Folddisco is the most accurate method in querying the human fraction of the AFDB-proteome for zinc
fingers, both when using a short motif query suitable for pyScoMotif and RCSB (d, left; residue labels, e.g. F207, denote chain and residue number) and when using the
motif-containing segments suitable for MASTER (e, left). f, Folddisco achieves higher sensitivity than pyScoMotif on SCOPe-constructed benchmarks, where the goal is to
match SCOPe sequences of the same family as the query before matching a different fold, using all conserved columns (“full”) or a random subsample of them (60%, 20%). g,
Scalability comparison on various sized databases. Indexing speed (left): Folddisco is 18x faster than pyScoMotif; Index size (middle): Folddisco’s index is 3.5x smaller than
pyScoMotif’s; Querying speed (right): search time of the zinc finger motif (panel d) is up-to 48x (3x) shorter for Folddisco pre-filter (-full) compared to pyScoMotif.

ranging from a single residue pair to an entire structure.
Next, Folddisco can optionally identify the motif-forming
residues in each candidate that passed the pre-filter. To do
so, it constructs a graph where each candidate residue is a
node, and directed edges are drawn between node pairs that
match the query motif’s residue pairs either by having the
same feature set (as detected in the pre-filter) or a similar one
(extended search, see Methods). Folddisco detects connected
components in this graph, each of which is a proposed match
to the motif that is superposed to it, and the match’s root mean
square deviation (RMSD) is computed.
We compared the accuracy of Folddisco to that of RCSB
and pyScoMotif for detecting the zinc finger motif (partial
or full) and the serine peptidase motif in 23,391 AlphaFold2-
predicted structures of the human proteome (Methods). Each
detection of the zinc finger motif was counted as true positive
(TP) if it matched the PROSITE (22) rule PRU00042, and
as false positive (FP) otherwise. For serine peptidase, TPs
belonged to MEROPS’ (23) family S1 and other detections
were considered as FPs. Precision, recall, and F1 scores were
calculated using these counts and the total number of positives
(P) for the zinc finger (P=761) and serine peptidase (P=124)

motifs in the human proteome. All three tools performed
comparably on serine peptidase and the partial (three residues)
zinc finger motif (Extended Data Fig. 1).
However, Folddisco outperformed both methods when query-
ing the full, four-residue zinc finger motif, where RCSB and
pyScoMotif had low recall (Fig. 1d). Folddisco was also more
accurate than MASTER (Fig. 1e) when the query was pro-
vided as segments containing the zinc finger motif (Methods),
while pyScoMotif failed to return any results (Supplemen-
tary Table 1). Thus, Folddisco is the only method that can
search both discrete motifs and discontinuous segments. In all
benchmarks, Folddisco’s pre-filter alone achieved competitive
accuracy, demonstrating the effectiveness of its extended fea-
ture set and coverage score ranking. We studied the runtime
and scalability of Folddisco in a separate benchmark but even
in this one with a single database, Folddisco’s query time was
>7 times faster than any other method (Extended Data Fig. 1).
To evaluate Folddisco’s generalizability beyond zinc fingers
and serine peptidases, we developed a benchmark based on
SCOPe (24). Instead of relying on full SCOPe-domain align-
ments, we aimed to mimic motifs by selecting conserved and
scattered residues from family-level multiple sequence align-
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Fig. 2. Applications of Folddisco. a, Zinc finger motif detection. A query for a C2H2 zinc finger (top-left) identifies full hits in previously unannotated proteins (bottom-left,
middle) and a partial hit corresponding to the known metal-coordinating site in an E. coli enzyme (right). b, Conformational state identification. Queries using motifs from
activated (left, magenta) or inactivated (right, purple) G-protein-coupled receptors (GPCRs) successfully retrieve structures in the corresponding functional states. c, Protein
interface search. A query using an immunoglobulin domain interface (left) retrieves a single-chain variable fragment that exhibits a similar binding geometry (right).

ments generated by the structural aligner FoldMason (25).
In each alignment we identified columns with full occupancy
(no gaps) and a “dominant” residue (occurring in >66% of
the members) and constructed three benchmarks by using
the dominant residues from all identified columns as a query
(termed “full”); by randomly sampling 60% of the columns
and using their dominant residues; and by sampling and us-
ing 20%. Each such query was searched against the SCOPe
database and a match was counted as TP if it belonged to the
same family as the query, FP if it belonged to a different fold,
and ignored otherwise. Sensitivity was measured as the frac-
tion of correctly identified family members (TP/P) before the
first FP, where the ranking of the matches was by the coverage
score for Folddisco’s pre-filter or by RMSD for pyScoMotif
and Folddisco’s full pipeline. Folddisco was consistently more
sensitive than pyScoMotif with Area Under the Sensitivity
Curve values of 0.837, 0.733 and 0.414 compared to 0.300,
0.290, and 0.285 for the three benchmarks, respectively (Fig.
1f). Of note, while pyScoMotif’s performance peaked when
queries had fewest residues (on 20%) and was nearly the same
otherwise (60% and full), Folddisco improved with every gain
of information. Here too, Folddisco’s pre-filter alone achieved
performance comparable to the full pipeline, indicating that
its coverage score ranking is in high agreement with RMSD-
based sorting, despite being approximately 15-fold faster.

Next, we studied Folddisco’s scalability in comparison to
pyScoMotif, which is a faster implementation of the RCSB
method. To that end, we used Folddisco to index five
databases, holding between 4K and 53M structures (Meth-
ods) and pyScoMotif to index the three smallest of them.
Index construction by Folddisco was faster than by pyScoMo-
tif, taking 26.5 minutes for 540K structures using 64 cores,
compared to 4.87 hours (Fig. 1g, left). Folddisco’s storage
requirement of 31.5GB was less than half of pyScoMotif’s
79GB for the 540K database (Fig. 1g, middle). By extrapolat-
ing the requirements of pyScoMotif for larger databases, we
find that Folddisco’s index construction time and storage re-
quirement improve even more as the input database increases.
This means, for example, that indexing the 53M structures
of the AFDB50 required 1.45TB by Folddisco, compared to
5.38 times more—7.8TB extrapolated for pyScoMotif. Fold-
disco’s full pipeline’s querying time of the zinc finger motif
was shorter by a factor of ∼3, compared to pyScoMotif for all
databases. Folddisco’s pre-filter was 50x faster: nearly instan-
taneous for smaller databases and taking only ∼13 seconds
for AFDB50 (Fig. 1g, right). Having established Folddisco’s
motif search capability, we examined three use cases: func-
tional annotation of divergent sequences, search for protein
state-defining motifs and interface detection.
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Folddisco identified a zinc finger motif in metagenomic- (from
ESM30) and uncharacterized oyster (from AFDB50) proteins,
which lack sequence-level annotations such as InterPro (8)
domains (Fig. 2a, left and middle). It also recognized a partial
motif in E. coli, pinpointing known metal-coordinating sites
(26) of peptide deformylase (Fig. 2a, right). These examples
demonstrate the advantage of Folddisco over Foldseek for
detecting motifs, rather than longer structural elements, as
Foldseek scored the two uncharacterized proteins with high
E-values of >20 (commonly above the cutoff for discarding)
and could not at all align the query to the E. coli protein.
These discoveries and similar ones (Supp. Fig. 2) under-
score Folddisco’s capacity to detect structurally conserved yet
sequence-divergent features.
Next, Fig. 2b demonstrates that Folddisco searches related
to GPCR activation—the CWxP, NPxxY, and DRY motifs
of CXCR2—successfully distinguish between active and in-
active β-adrenergic receptor structures in the PDB and their
characteristic activation-state patterns. Since AlphaFold2 has
been shown to sample different conformational states (27, 28),
we sought to compare the prevalence of active versus inactive
states in predicted and experimental databases. When run
on the PDB, 54% of Folddisco’s matches were in the active
state and a similar fraction (53%) was found in the AFDB50.
This suggests that the conformational landscape sampled by
AlphaFold2 closely mirrors the prevalence of functional states
found in the PDB.
For the last use case, Folddisco queried a cross chain pro-
tein–protein interface motif pattern (29) derived from im-
munoglobulin λ-like and immunoglobulin κ variable domains
(Fig. 2c) in AFDB50, retrieving a single-chain variable frag-
ment exhibiting the same interaction geometry. Demonstrating
more capabilities, Folddisco successfully identified disulfide
bonds (Supp. Fig. 3) and short linear motifs (Supp. Fig. 4).
To facilitate access to Folddisco motif searching, we devel-
oped a webserver (search.foldseek.com/folddisco). Queries
can be provided as a standalone motif or as a full protein
structure with specified motif residues. The webserver pro-
vides prebuilt indices of major databases: AFDB50, PDB100,
AFDB-proteome (12) and ESM30. For each query, it returns
up to 1,000 top-ranked matches per database, along with Fold-
disco scores and interactive structure visualizations. Searching
for the full zinc finger motif (Fig. 1d) in all databases at once
completes in approximately 100 seconds on a single core.
In conclusion, Folddisco’s compact index enhances scalability
by reducing storage and indexing time, enabling fast querying
of large databases like AFDB50 and ESM30. Its features for
side-chain orientations and rarity-based scoring allow accu-
rate detection of both short motifs and long fragments. By
uncovering motifs linked to catalysis, complex formation, and
conformational regulation, Folddisco facilitates mechanistic
insights across diverse taxonomic and functional landscapes.
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Methods

General workflow
Indexing. Folddisco is designed to efficiently query a motif in
input databases of many millions of protein structures. There-
fore, we generate an index by assigning each database protein
structure a numerical ID and examining its pairs of proximal
residues (default radius: 20Å). From each proximal pair Fold-
disco extracts two sets of 7 features (see “Pairwise features”)
and jointly encodes each of them as a 32-bit unsigned inte-
ger (see “Encoding feature sets as integers”). Each unsigned
integer serves as a key to retrieve the input IDs of structures
in which its encoded feature set was found (see “Mode of
indexing”). Folddisco’s index does not include the structure
positions of the proximate residues, but they can be option-
ally reconstructed (see “Residue matching”). This strategy in
combination with delta compression of the IDs results in a
more compact index compared to the indices of conventional
position-storing motif search methods.

Querying. Pairs of proximal residues are identified in the query
motif in the same way input structures are processed during
indexing. For each pair at position i and j, two sets of fea-
tures—(i,j) and its reverse (j,i), are extracted and encoded
because of the asymmetry in the representation. To increase
sensitivity, Folddisco can search for more encodings through
amino-acid substitutions and adjustable distance/angle thresh-
olds (“Extended search”). In the pre-filter step, the 32-bit
integers computed for the query motif are used as keys to
retrieve IDs of indexed structures that share at least one fea-
ture set with the query. Folddisco then ranks the IDs by their
coverage of the motif, i.e., by the number of feature sets they
share with it and the sets’ rarity (see “Pre-filtering”). After
pre-filtering, an optional step can match the residues of the
query to those of pre-filtered structures. As Folddisco doesn’t
index positional information, this step is conducted by finding
connected graph components (see “Residue matching”).

Folddisco’s feature set
Pairwise features. Folddisco extracts two feature sets from
each pair of proximal residues in each input structure as well
as the query. This set includes 5 features used by RCSB: the
amino acid type of the residues (AA1 and AA2), the distance
between their Cα atoms, the distance between their Cβ atoms,
and the intersecting angle between the Cα-Cβ vectors. Since
RCSB’s features do not capture the side-chain orientations of
the residues, we included 2 additional features in Folddisco’s
set: the two dihedral angles in the atoms of N1-Cα1-Cβ1-Cβ2
and N2-Cα2-Cβ2-Cβ1, which were proposed by trRosetta
for structure prediction (20). Since these two features are
not symmetric and may have different values, depending on
which residue is considered as the first, Folddisco considers
two feature sets, one in the direction of AA1-AA2 and another
in the direction of AA2-AA1.

Encoding feature sets as integers. Folddisco encodes each of
the 7 features in a set in bits and concatenates them bitwise
as follows. AA1 and AA2 are treated numerically (0,1,...,19),

requiring 5 bits each. The distance features are discretized
into bins from 0 to 20Å (default number: 16), requiring 4
bits each. To keep the cyclic nature of the angle features, we
discretize their cosine and sine values from -1 to 1 (default: 4
bins for cosine, 4 bins for sine), requiring 4 bits per angle. In
total, this encoding requires 30 bits, which can be represented
as a 32-bit unsigned integer (first 2 bits are always ‘0’).

Index building
Index format. Folddisco’s index consists of 4 files; main index
file (*.value), offset (*.offset), lookup (*.lookup), and
metadata (*.type). The main index file stores the numerical
IDs of the protein structures as values of the keys. The offset
file stores the offset of each key in the main index file from the
first key to enable random access to the index. The lookup file
is for mapping the numerical IDs to the original textual iden-
tifiers of the protein structures (e.g., 0 mapped to ‘P00568’).
The metadata file stores the information required for query-
ing, such as the path to the input protein structures, binning
information, and the indexing mode used (see section).

Mode of indexing. Folddisco supports two modes of indexing
based on the data structure of the offset file: array-based or
hashmap-based. The array-based offset file’s size is fixed and
determined by the theoretical potential of unique feature set
encodings (keys). As Folddisco’s default encoding uses 30
bits, there can be up-to 230 encodings, each of which requires
8 bytes for its offset, thus the array-based offset file requires
8 GB of memory

(
230 ×8 bytes = 8 GB

)
. In contrast, Fold-

disco’s hashmap depends on the number of unique feature
set encodings computed for the input and requires a memory
allocation overhead three times this number to avoid hash
collisions. For small input (rule of thumb: fewer than 65k
protein structures), the hashmap-based offset is more space-
efficient because it avoids allocating the full 8 GB required
by the array-based offset. However, for large datasets, the
array-based offset file is more efficient in terms of memory
usage because it does not require the overhead allocation.
Both offset formats support random access to the index with
multiple threads. Folddisco handles the numerical IDs for
each mode differently; delta compression is applied to 64-bit
unsigned integers in the case of array-based indexing, while
16-bit unsigned integers are used for the hashmap-based index.
In array-based mode, the compressed IDs are stored using
multiple threads, so it is recommended to use SSDs for index
construction to avoid an Input/Output bottleneck.

Protein structure input formats
Folddisco accepts input protein structures either as files in
PDB or mmCIF format (optionally gzip-compressed), or as
Foldcomp-compressed (30) files. When reading Foldcomp-
compressed protein structures, Folddisco can iterate through
them at a comparable speed compared to reading uncom-
pressed protein structures in PDB/mmCIF format.

Pre-filtering
When querying a motif, Folddisco first applies a computa-
tionally inexpensive pre-filter to eliminate most non-matching

Kim et al. | Folddisco 5



structures before any structures are read from disk. The query
motif is provided to Folddisco in PDB/mmCIF format. By
default (but see also “Extended search”), pairs of proximal
residues are identified in the query motif, and two sets of
features are extracted and encoded from each of them in the
same way the input structures are processed during indexing,
resulting in a set of 32-bit unsigned integer keys. Folddisco
uses these keys to list candidate structures that share at least
one feature set with the query motif as follows.

Encodings’ rarity. Folddisco computes Inverse Document Fre-
quency (IDF) weights for each 32-bit encoding to represent
its rarity among the input protein structures.

IDFe = log2

(
# of structures in the index e

# of structures containing encoding

)

These weights are used to rank the candidate structure list by
computing coverage scores.

Coverage scores. Each candidate is scored by the sum of the
IDF weights of the encodings it shares with the query:

Scorecandid. struct. = L−α
n∑

i=1
IDFei ,

where n is the number of shared encodings, L is the length of
the candidate structure in residues, and α is a length-penalty
exponent (default 0.5) to avoid length-dependent random
matches ranking high.

Motif completeness score based on query residues. In ad-
dition to the coverage score, Folddisco computes a motif
completeness score for each candidate. Notably, if a given
structure candidate shares two feature sets (encodings) with
the query, they can involve either 3 or 4 distinct residues in the
query: the two encodings from two pairs that share a residue
(x-y and x-z) or two encodings from two distinct pairs (x-y and
z-t). Since Folddisco has access to the query’s residues also
during pre-filtering, it counts for each candidate the number
of distinct query residues its shared features with the query
involve. This number is reported separately from the coverage
score and can be used for optional post-filtering.

Extended search. The distance and angle features are con-
trolled by thresholds (default = 0). When these thresholds are
greater than 0, Folddisco will compute more encodings for
each query proximal pair (e.g., with a slightly shorter/longer
distance between Cα atoms), potentially matching more input
structures. During benchmarking, we applied thresholds of
0.5Å for distances and 5° for angles to allow minor conforma-
tional differences. Folddisco also allows extended amino acid
matching by providing alternative uppercase one-letter amino
acid codes (e.g., ‘A’ for Alanine and ‘X’ for any amino acid)
after the position of the query residue to extend. Users can
also use custom lowercase one-letter codes to represent amino
acid groups by properties: ‘p’ (positive), ‘n’ (negative), ‘h’

(hydrophilic), ‘b’ (hydrophobic), and ‘a’ (aromatic). Setting
an amino acid alternative will prompt Folddisco to compute
more query encodings, extending the search in the same way
as the distance and angle thresholds do.

Residue matching and superposition

Graph construction. Despite not holding position information
in its index, Folddisco can optionally match the residues of
an input candidate to the query after the pre-filter step by es-
tablishing a graph where the nodes represent the candidate’s
residues. At this stage Folddisco reads the full information of
each candidate, including residue positions from disk. Fold-
disco examines all candidate residue pairs that match at least
one query residue pair in terms of amino acid identities (e.g.,
a candidate Cys-His pair will be examined if the query has
Cys-His as one of its pairs). If a residue pair shares a feature
set with some query residue pair, Folddisco links the residue
pair’s nodes with an edge in the direction indicated by the
shared feature. In this stage, more than two feature sets are
considered for each query residue pair by setting the distance
and angle thresholds as described in the section “Extended
search”. This means that the residues of all pairs discovered
by the pre-filter will be linked with at least one directed edge,
but potentially additional off-by-a-little pairs will be linked
as well. In addition, residue pairs with the same amino acid
identities and a similar Cα–Cα distance to some query residue
pair (<0.5Å difference by default) will be linked with an edge.

Connected components detection. Folddisco lists connected
components in the graph built for the candidate, as these cohe-
sive subgraphs indicate groups (and not just pairs) of residues
that together are likely to form the motif. Folddisco identi-
fies two connectivity types: strongly connected components
with Tarjan’s algorithm (31) and weakly connected compo-
nents by first ignoring edge directions and then performing a
DFS-based search (32).

Superposition computation. After residue matching, Fold-
disco superposes the query motif on the matched residues
using the Quaternion Characteristic Polynomial algorithm
(33). RMSD is calculated using the coordinates of the Cα and
Cβ atoms of the query motif and the matched residues.

Benchmarks

Version of databases and software. We used pyScoMotif ver-
sion 20231119 (commit 916b515), MASTER version 1.5, and
Folddisco commit cc4cd7f in all benchmarks. PDB archive
was downloaded on March 7th, 2024. We used AlphaFold
database version 4 (released in October 2022), ESMatlas v0
(released in November 2022) and SCOPe v2.08. We addi-
tionally derived subsets from these resources: AFDB rep.,
the non-redundant representatives produced by Foldseek clus-
tering of AFDB v4; AFDB50, the same AFDB v4 models
clustered at a 50% sequence-identity threshold; and ESM30,
high-confidence ESMatlas v0 models clustered at 30% se-
quence identity.
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Human proteome benchmark
We benchmarked Folddisco on the human subset of the AFDB-
proteome, which consists of 23,391 protein structures and
compared it to RCSB’s motif search, MASTER, and pySco-
Motif. We used the motif set reported in Bittrich et al. (16),
which includes the catalytic triad of serine protease in trypsin
(PDB ID: 4CHA Residues: B57, B102, C195), the first letter
of the residue’s identifier is the chain ID, and the number
refers to the residue’s position in the respective chain. and
the C2H2 zinc finger motif in TATA-binding early growth
response protein 1 (EGR1). For the zinc finger motif, we used
both the three residue-partial motif (PDB ID 1G2F: F207,
F225, F229) and the four residue-full motif (PDB ID 1G2F:
F207, F212, F225, F229) in our benchmark. As MASTER
is designed for fragment searching, we prepared a segment
query that includes the neighboring residues of the zinc-finger
motif residues (PDB ID: 1G2F F204-215, F222-232) and used
this segment in the benchmark. Detections were counted as
true/false positives as described in the Main text.

Computing resource and resource measurement
All benchmarks—except the AFDB50 indexing step—were
conducted with a server equipped with two 64-core AMD
EPYC 7742 CPUs, 2TB of RAM and 15.3TB NVMe disk.
AFDB50 indexing was carried out on a separate machine
equipped with four Intel Xeon Gold 6328HL CPUs, 6 TB
RAM, and the same 15.3 TB NVMe storage. Maximum RAM
usage (maximum resident set size) and elapsed time of each
tool were measured with the GNU time -v command.

Webserver
We integrated Folddisco into the MMseqs2 webserver plat-
form (34). The Folddisco motif search is available when
the webserver is launched in structure mode, in conjunction
with Foldseek, Foldseek-Multimer and FoldMason. Users
can search through Folddisco databases for AFDB50, AFDB-
proteome, ESM30 and PDB100. The latter is built directly
from the original PDB files, while the others were built from
Foldcomp databases (Data availability). We prioritize matches
by selecting the best 1,000 database structures according to
their pre-filter coverage scores using the --top 1000 param-
eter in Folddisco. These are passed to Folddisco’s residue
matching step, and the final result list is then sorted by num-
ber of matched nodes and RMSD. To visualize query and
target residue matching, the matched target structures are de-
compressed from the Foldcomp database, except for PDB100
entries, which are retrieved directly as PDB files. All structure
visualizations are rendered using the NGL viewer library (35).

Code availability
Folddisco is GPLv3-licensed free open-source software. The
source code and ready-to-use binaries, as well as precomputed
databases, can be downloaded at folddisco.foldseek.com. The
scripts used for the benchmarks and plotting are available at
https://github.com/steineggerlab/folddisco-analysis. The web-

server code is available at github.com/soedinglab/mmseqs2-
app.
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Extended Data Fig. 1. Performance comparison of Folddisco to pyScoMotif and RCSB Precision, recall, F1-score and search time (in seconds) with 12 threads were
evaluated for top serine peptidase motif query and bottom zinc-finger motif with 3 residues.
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Supplementary Figure 1. Runtime benchmarking of Folddisco index construction across databases and CPU cores. Index building time (in seconds) was measured for
four databases — PDB, Swiss-Prot, human subset of the AFDB-proteome, and AFDB50 cluster representatives — using 1, 12, 32, 64, and 128 CPU cores.
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Supplementary Figure 2. Partial zinc finger motifs identified in ubiquitin-specific peptidases. Folddisco detected partial matches of the zinc finger motif (top) in
ubiquitin-specific peptidases USP42 and USP17L20 (middle). Notably, the residue order is reversed in these matches. AlphaFold3 predictions confirmed zinc coordination
within these motifs (bottom).
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Supplementary Figure 3. Detection of single disulfide bonds and knottin motifs Folddisco identified single disulfide bonds (red) in insulin (top) and complex knottin motifs
formed by multiple disulfide bonds (bottom). From search of a knottin motif in a spider toxin, a conotoxin was retrieved with a partial match.
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Supplementary Figure 4. Identification of short linear motifs by Folddisco. Folddisco searched and detected the known “GGRGG” motif (top) and a randomly generated
“APPLE” motif (bottom). The query “APPLE” motif structure (gray) was predicted using ColabFold.
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